
OpenAD Tutorial 1/2

Jean Utke1

1University of Chicago and Argonne National Laboratory

CMG Workshop
Sept. 9/10, 2009

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 1

outline

part 1
motivation
AD basics and examples
reversal schemes and checkpointing
concerns for the AD user (model developer)

part 2
non smooth models
checkpointing with Revolve
adjoinable MPI

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 2

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it automatically!

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 3

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it automatically?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 4

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

⇒ use tools to do it at least semi-automatically! ,

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 5

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t2

t1

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 6

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t1

t2

code list→ intermediate values t1 and t2

each intrinsic v = φ(w, u) has local partials ∂φ
∂w , ∂φ∂u

e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)
y = t2*c

What do we do with this?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 7

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 8

how does AD compute derivatives?
f : y = sin(a ∗ b) ∗ c : R3 7→ R
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

code list→ intermediate values t1 and t2
each intrinsic v = φ(w, u) has local partials ∂φ

∂w , ∂φ∂u
e.g. sin(t1) yields p1=cos(t1)
in our example all others are already stored in
variables

t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

What do we do with this?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 9

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)
for each v = φ(w, u) propagate forward in order v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)
t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 10

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)
for each v = φ(w, u) propagate forward in order v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 11

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)
for each v = φ(w, u) propagate forward in order v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 12

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)
for each v = φ(w, u) propagate forward in order v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c
d y = d t2*c + d c*t2

What is in d y ?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 13

forward mode with directional derivatives
associate each variable v with a derivative v̇

take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)
for each v = φ(w, u) propagate forward in order v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

in practice: associate by name [a,d a]
or by address [a%v,a%d]

interleave propagation computations

t1 = a*b
d t1 = d a*b + d b*a
p1 = cos(t1)
t2 = sin(t1)
d t2 = d t1*p1
y = t2*c
d y = d t2*c + d c*t2

What is in d y ?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 14

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 15

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 16

d y contains a projection

ẏ = Jẋ computed at x0

for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

yields the first element of the gradient

all gradient elements cost O(n) function evaluations

This as a source transformation...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 17

sidebar: OpenAD overview

www.mcs.anl.gov/OpenAD
forward and reverse
source transformation
modular design
aims at large problems
language independent
transformation
researching combinatorial problems
current Fortran front-end Open64
(Open64/SL branch at Rice U)
migration to Rose (already used for
C/C++ with EDG)
uses association by address
(i.e. has an active type)

Rapsodia for higher-order
derivatives via type change
transformation

Open

Analysis

whirl

SageTo

XAIF

xerces

boost

Angel

Sage3
EDG/front − ends

XAIF

(AD source transformation)

xaifBooster

FortTk

Open

Open64

AD/

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 18

www.mcs.anl.gov/OpenAD

sidebar: toy example

prepare original code⇒ run it through OpenAD⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)

y=sin(x*x)

!$openad DEPENDENT(y)

end subroutine

driver:
program driver

use OAD active
implicit none
external head

:: x, y
x=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 19

sidebar: toy example

prepare original code

⇒ run it through OpenAD⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head

:: x, y
x=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 20

sidebar: toy example

prepare original code⇒ run it through OpenAD

⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head

:: x, y
x=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 21

sidebar: toy example

prepare original code⇒ run it through OpenAD

⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head

:: x, y
x=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 22

sidebar: toy example

prepare original code⇒ run it through OpenAD

⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head

:: x, y
x=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 23

sidebar: toy example

prepare original code⇒ run it through OpenAD⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active

implicit none
external head
real:: x, y
x=.5D0

x%d=1.0

call head(x,y)

print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 24

sidebar: toy example

prepare original code⇒ run it through OpenAD⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 25

sidebar: toy example

prepare original code⇒ run it through OpenAD⇒ adapt a driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver:
program driver

use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
x%d=1.0
call head(x,y)
print *, "F(1,1)=",y%d

end program driver

transformed model program:

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) oadS 0
...
REAL(w2f 8) oadS 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 5 = ((oadS 3 + oadS 2) * oadS 1)
CALL sax(oadS 5,X,Y)
RETURN
END SUBROUTINE

the sax call comes from propagation following preaccumulation...not discussed yet

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 26

try it out

cd ∼/OpenAD
. ./setenv.sh
this sets up environment variables (see below) and some shell aliases

ANGELROOT=/home/guest1/OpenAD/angel
ANGEL BASE=/home/guest1/OpenAD/angel
BOOSTROOT=/home/guest1/OpenAD/boost
BOOST BASE=/home/guest1/OpenAD/boost
LD LIBRARY PATH=/home/guest1/OpenAD/Open64/osprey1.0/targ ia32 ia64 linux/whirl2f:\
/opt/intel/Compiler/11.0/083/lib/ia32

OPEN64ROOT=/home/guest1/OpenAD/Open64/osprey1.0/targ ia32 ia64 linux
OPEN64TARG=targ ia32 ia64 linux
OPEN64 BASE=/home/guest1/OpenAD/Open64
OPENADFORTTK=/home/guest1/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux
OPENADFORTTKROOT=/home/guest1/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linux
OPENADFORTTK BASE=/home/guest1/OpenAD/OpenADFortTk
OPENADPLATFORM=x86-Linux
OPENADROOT=/home/guest1/OpenAD
OPENAD BASE=/home/guest1/OpenAD
OPENANALYSISROOT=/home/guest1/OpenAD/OpenAnalysis/x86-Linux
OPENANALYSIS BASE=/home/guest1/OpenAD/OpenAnalysis
PATH=/home/guest1/OpenAD/bin:/home/guest1/OpenAD/OpenADFortTk/OpenADFortTk-x86-Linuxbin:...
REVOLVEF9XROOT=/home/guest1/OpenAD/RevolveF9X
XAIFBOOSTERROOT=/home/guest1/OpenAD/xaifBooster/..
XAIFBOOSTER BASE=/home/guest1/OpenAD/xaifBooster
XAIFSCHEMAROOT=/home/guest1/OpenAD/xaif
XAIFSCHEMA BASE=/home/guest1/OpenAD/xaif
XERCESCROOT=/home/guest1/OpenAD/xercesc/x86-Linux
XERCESC BASE=/home/guest1/OpenAD/xercesc

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 27

try it out contd. ...

cd Examples/OneMinute
look at head.prepped.f90 vs. head.f90
look at the Makefile
openad -h to see some options
run make clean
and make

openad -c -m f head.prepped.f90
openad log: openad.2009-09-05_16:19:02.log˜
parsing head.prepped.f90
analyzing source code and translating to xaif
tangent linear transformation
getting runtime support file OAD_active.f90

getting runtime support file w2f__types.f90
getting runtime support file iaddr.c

translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran
gfortran -o w2f__types.o -c w2f__types.f90
gfortran -o OAD_active.o -c OAD_active.f90
gfortran -o driver.o -c driver.f90
gfortran -o head.prepped.xb.x2w.w2f.pp.o -c head.prepped.xb.x2w.w2f.pp.f
gfortran -o driver w2f__types.o OAD_active.o driver.o head.prepped.xb.x2w.w2f.pp.o

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 28

try it out contd. ...

look at the transformed file head.prepped.xb.x2w.w2f.pp.f
look at the the driver code in driver.f90
run the binary: ./driver
should produce output like this:

/home/guest1/OpenAD/Examples/OneMinute> ./driver
driver running for x = 0.50000000000000000

yields y = 0.54630248984379048 dy/dx = 1.2984464104095248
1+tan(x)ˆ2-dy/dx = 3.85975973404839579E-017

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 29

applications

for instance

ocean/atmosphere state estimation & uncertainty quantification, oil
reservoir modeling

computational chemical engineering

airfoil shape optimization, suspended droplets, ...

beam physics

mechanical engineering (design optimization)

use

gradients
Jacobian projections

Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 30

applications

for instance

ocean/atmosphere state estimation & uncertainty quantification, oil
reservoir modeling

computational chemical engineering

airfoil shape optimization, suspended droplets, ...

beam physics

mechanical engineering (design optimization)

use

gradients
Jacobian projections

Hessian projections

higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients?
CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 31

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c

d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 32

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y

d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 33

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y

d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 34

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0

d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 35

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2

d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 36

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 37

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1

What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 38

reverse mode with adjoints

same association model

take a point (a0, b0, c0), compute y, pick a weight ȳ

for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b
p1 = cos(t1)
t2 = sin(t1)
y = t2*c
d c = t2*d y
d t2 = c*d y
d y = 0
d t1 = p1*d t2
d b = a*d t1
d a = b*d t1 What is in (d a,d b,d c)?

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 39

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode as a source transformation with OpenAD.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 40

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode as a source transformation with OpenAD.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 41

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode as a source transformation with OpenAD.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 42

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode as a source transformation with OpenAD.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 43

(d a,d b,d c) contains a projection
x̄ = ȳTJ computed at x0

for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

all gradient elements cost O(1) function evaluations

but consider when p1 is computed and when it is used

storage requirements grow with the length of the
computation

typically mitigated by recomputation from
checkpoints

Reverse mode as a source transformation with OpenAD.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 44

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a

c

*

*

a b c

t2

t2

sin

p1

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 45

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a
*

*

a b c

t2

t2

sin

p1

c

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 46

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b a
*

*

a b c

t2

t3

t3 = c*p1

t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 47

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

b
*

*

a b c

t2

t3

a

t3 = c*p1

t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 48

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

*

a b c

t2

t3

t4b

t3 = c*p1
t4 = t3*a

t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 49

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

*

a b c

t2

t3

t4b

t3 = c*p1
t4 = t3*a

t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 50

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

a b c

t2

t5 t4

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 51

sidebar: preaccumulation & propagation
build expression graphs (limited by aliasing, typically to a basic block)

preaccumulate them to local Jacobians J
long program with control flow⇒ sequence of graphs⇒ sequence of Ji

*

a b c

t2

t5 t4

t3 = c*p1
t4 = t3*a
t5 = t3*b

(t5,t4,t2) is the preaccumulated Ji

minops(preaccumulation) ?
is a combinatorial problem
⇒ compile time AD optimization!

forward propagation of ẋ
(Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .)

adjoint propagation of ȳ
(. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 52

sidebar: toy example - reverse mode

same code preparation

⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 53

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 54

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 55

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 56

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 57

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 58

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline

⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 59

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 60

sidebar: toy example - reverse mode

same code preparation⇒ reverse mode OpenAD pipeline
⇒ adapt the driver routine

numerical “model” program:

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x*x)

!$openad DEPENDENT(y)
end subroutine

driver modified for reverse mode:
program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
y%d=1.0
our_rev_mode%tape=.TRUE.
call head(x,y)
print *, "F(1,1)=",x%d

end program driver

preaccumulation & store Ji:
...
oadS 0 = (X%v*X%v)
Y%v = SIN(oadS 0)
oadS 2 = X%v
oadS 3 = X%v
oadS 1 = COS(oadS 0)
oadS 4 = (oadS 2 * oadS 1)
oadS 5 = (oadS 3 * oadS 1)
oadD(oadD ptr) = oadS 4
oadD ptr = oadD ptr+1
oadD(oadD ptr) = oadS 5
oadD ptr = oadD ptr+1
...

retrieve stored Ji & propagate:
...
oadD ptr = oadD ptr-1
oadS 6 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 6
oadD ptr = oadD ptr-1
oadS 7 = oadD(oadD ptr)
X%d = X%d+Y%d*oadS 7
Y%d = 0.0d0
...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 61

try it out

cd Examples/OneMinuteReverse
note identical head.prepped.f90 but changed flag in the Makefile
run make clean and make
should produce output like this:

openad -c -m rj head.prepped.f90
openad log: openad.2009-09-08_00:44:10.log˜
parsing head.prepped.f90
analyzing source code and translating to xaif
adjoint transformation
getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c
getting runtime support file ad_inline.f
getting runtime support file OAD_cp.f90
getting runtime support file OAD_rev.f90
getting runtime support file OAD_tape.f90
getting template file

translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran
gfortran -o OAD_active.o -c OAD_active.f90
gfortran -o OAD_cp.o -c OAD_cp.f90
gfortran -o OAD_tape.o -c OAD_tape.f90
gfortran -o OAD_rev.o -c OAD_rev.f90
cc -o iaddr.o -c iaddr.c
gfortran -o head.prepped.xb.x2w.w2f.pp.o -c head.prepped.xb.x2w.w2f.pp.f
gfortran -o driver w2f__types.o OAD_active.o OAD_cp.o OAD_tape.o OAD_rev.o

iaddr.o driver.o head.prepped.xb.x2w.w2f.pp.o

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 62

try it out contd. ...

look at the transformed file head.prepped.xb.x2w.w2f.pp.f
look at the the driver code in driver.f90
run the binary: ./driver
should produce output like this:

/home/guest1/OpenAD/Examples/OneMinuteReverse> ./driver
driver running for x = 0.50000000000000000

yields y = 0.54630248984379048 dy/dx = 1.2984464104095248
1+tan(x)ˆ2-dy/dx = 3.85975973404839579E-017

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 63

Reversal Schemes

why it is needed

major modes

OpenAD implementation

alternatives

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 64

recap: store intermediate values / partials

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 65

storage also needed for control flow trace and addresses...

original CFG⇒ record a path through the CFG⇒ adjoint CFG

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

⇒

Entry(1)

B(2)'

Branch(3)

B(4)'

T

iLc

 F

pB T

EndBranch(8)

B(9)'

Exit(10)

Loop(5)

B(6)'

T

pLc

F

+Lc

EndLoop(7)

pB F

⇒

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

often cheap with structured control flow and simple address computations (e.g.

index from loop variables)

unstructured control flow and pointers are expensive
CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 66

trace all at once = global split mode

subroutine A()
call B(); call

D(); call B();
end subroutine A

subroutine B()
call C()

end subroutine B

subroutine C()
call E()

end subroutine C

B D B

CEC

A
1

1 1 2

211

A A

D B B D B

CECCEC

B

1

1 1

1 1

1

1

1

1

1

2 2

22

S
n

n-th invocation of subroutine S subroutine call

run forward order of execution

store checkpoint restore checkpoint

run forward and tape run adjoint

have memory limits - need to create tapes for short sections in reverse order

subroutine is “natural” checkpoint granularity, different mode...
CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 67

trace one SR at a time = global joint mode

1

C

B

A

D

E C

B

A

B

C C

B

C E

D D

E E

B

C C

B

C

1

2

1

1 1 2 2

1 1 2 2 2 2 1

1 1

1 1

1 1

1 1

taping-adjoint pairs
checkpoint-recompute pairs
the deeper the call stack - the more recomputations (unimplemented solution -
result checkpointing)
familiar tradeoff between storing and recomputation at a higher level but in
theory can be all unified.
in practice - hybrid approaches...

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 68

in OpenAD orchestrated with templates

S

S1

2

template variables
subroutine variables
setup

state indicates task 1

pre state chng. task 1

post state chng. task 1

state indicates task 2

pre state chng. task 2

post state chng. task 2

wrapup

subroutine template()
use OAD_tape ! tape storage
use OAD_rev ! state structure

!$TEMPLATE_PRAGMA_DECLARATIONS
if (rev_modetape) then

! the state component
! ’taping’ is true
!$PLACEHOLDER_PRAGMA$ id=2

end if

if (rev_modeadjoint) then
! the state component
! ’adjoint’ run is true
!$PLACEHOLDER_PRAGMA$ id=3

end if

end subroutine template

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 69

ingredients

OpenAnalysis has side-effect analysis

provides checkpoint sets as (formal) arguments & references to global
variables

we ask for four sets: ModLocal ⊆ Mod, ReadLocal ⊆ Read

look at some code:

a simple split mode template in
OpenAD/runTimeSupport/simple/ad template.split.f

look at the joint mode template file in
OpenAD/Examples/OneMinuteReverse

change the driver and rerun the example with -m rs instead of -m rj

look at the output

a bit more complicated - the ShallowWater example

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 70

example - call graph of a shallow water model

inifields

readparms

read_data_file

read_data_fields

prep_depthcheck_cfl

make_masks

ini_scales prep_coriolis

determine_data_time

read_field read_extended_field boundary_conditions

read_depth_data variance

map_from_control_vector

loop_body_wrapper_outer

read_data

read_eta_data

make_weights

is_eta_data_time

make_weights_depth

make_weights_eta make_weights_uv

make_weights_zonal_transport

make_weights_lapldepth

make_weights_graddepth

forward_model

map_to_control_vector length_of_control_vector

time_step

umomentum vmomentum continuity calc_zonal_transport_split

initial_values calc_depth_uv calc_zonal_transport_joint

cost_function

cost_depth

loop_body_wrapper_inner

shallow_water

mix joint and split mode

nested loop checkpointing in outer and inner loop body wrapper

inner loop body in split mode

calc zonal transport is used in both contexts

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 71

reversal scheme with nested checkpointing

subroutine level granularity

f

i1 i2 i3 i4

o1 o2

f

o2 o2

i4 i4 i4i3

plain mode

i3 i3

split mode

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 72

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters.

, memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 73

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji

& 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 74

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 75

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute

(2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 76

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 77

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 78

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 79

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 80

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 81

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 82

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 83

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 84

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 85

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

11 iters., memory limited to one iter. of storing Ji & 3 checkpoints

run forward, store the last step, and adjoin

restore checkpoints and recompute (2 levels in this example)

reuse checkpoint space as it becomes available for new checkpoints

optimal (binomial) scheme encoded in revolve; F9X implementation
available at http://mercurial.mcs.anl.gov/ad/RevolveF9X
(tomorrow)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 86

http://mercurial.mcs.anl.gov/ad/RevolveF9X

usage concerns

Adjoint efficiency depends on AD transformation algorithms and exploiting
higher level model properties (sparsity, iterative solvers, self adjointness,...)

BUT source transformation efficiency depends also on

capability for structured control flow reversal
code analysis accuracy
partitioning the execution for checkpointing

the above are affected by

use of programming language features

using such features in certain inherently difficult to handle patterns

programming style

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 87

therefore
knowing some AD tool “internal” algorithms is of interest to the user
(e.g. compare to compiler vectorization or interval arithmetic)

only very simple models with low computational complexity
→ can get away with “something”

fully automatic solutions exist for narrowly defined setups (e.g. NEOS)

When dealing with any unsupported language feature / programming pattern :

Does it have a supported alternative and is the alternative more efficient (and
better maintainable in the model source)?

Is the adjoint of such an alternative more efficient than the adjoint of the
unsupported construct?

What is the effort of changing the model vs. the effort of implementing a
potentially complicated or rarely used or inherently inefficient adjoint
transformation?

OpenAD mode of operation: implement language features on demand so that we can
maximize the time available to improve the generally applicable AD algorithms!

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 88

Separating the numerical core
want precise compile-time data flow analysis (activity, side effect,

etc...)

have conservative overestimate of aliasing, MOD sets, ...

to reduce the overestimate:

encapsulate ancillary logic (monitoring, debugging, timing, I/O,...)

small modules, routines, source files (good coding practice anyway)

consider separate modules for data and interfaces

extraction via source file selection

filtered-out routines treated as “black box”, with optimistic(!)
assumptions

provide stubs when optimistic assumptions are inappropriate

transformation shielded from dealing with non-numeric language features

note: the top level model driver needs to be manually adjusted

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 89

Structured vs. Unstructured Control Flow
think - GOTO, alternative ENTRY, early RETURN,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn STOPs into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

all is fine without the red arrow

by inspection: adjoint needs alternative ENTRY
(or GOTO); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

possible generic but inefficient fallback: trace
enumerated basic blocks, replay inverse trace
with GOTO <blockId> (no branches/loops left, more

memory needed for trace)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 90

Non-deterministic control flow
= control flow may change between two model executions on identical model inputs
because of a multiuser system environment
examples:

branching based on availability of system resources (that may be used by
others), disk space, memory, system load

communication in parallel execution for instance with mutexes, semaphores,
(justified) use of MPI TEST (test for completion of one exchg. 1 to early start exhg. 2, adjoint needs to switch test

to exchg.2)

ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

TEST||done TEST||done

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

False False

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 91

Non-deterministic control flow II

hard to automatically detect the context to which a tested condition
applies but the transformation requires the context information to
correctly generate & place the adjoint test condition

non-deterministic communication with MPI wildcards can be made
deterministic (at the expense of lower efficiency) by recording the actual
wild card values and using them in the adjoint sweep.

google “adjoinable MPI”

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 92

Checkpointing and non-contiguous data

checkpointing = saving program data (to disk)

“contiguous” data: scalars, arrays (even with stride > 1), strings,
structures,...

“non-contiguous” data: linked lists, rings, structures with pointers,...

checkpointing is very similar to “serialization”

Problem: decide when to follow a pointer and save what we point to
A

A

A

A

A

A

B

C
DD

E

(big)

unless we have extra info this is not decidable at source transformation
time

possible fallback: runtime bookkeeping of things that have been saved (is
computationally expensive)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 93

Semantically Ambiguous Data

e.g. EQUIVALENCE (or its C counterpart union)
data dependence analysis: dependencies propagate from one variable to all
equivalenced variables
“activity” (i.e. the need to generate adjoint code for a variable) leaks to all
equivalenced variables whether appropriate or not
certain technical problems with the use of an active type (as in OpenAD)

work-arrays (multiple,0 semantically different fields are put into a (large)
work-array); access via index offsets

data dependence analysis: there is array section analysis but in practice it
is often not good enough to reflect the implied semantics
the entire work-array may become active / checkpointed

programming patterns where the analysis has no good way to track the
data dependencies:

data transfer via files (don’t really want to assume all read data depends on
all written data)
non-structured interfaces: exchanging data that is identified by a “string” as
done for instance in the ESMF interfaces (if you feel bad about Fortran think of void* in C.)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 94

Recomputation from Checkpoints and Program Resources

think of memory, file handles, sockets, MPI communicators,...

problem when resource allocation and
deallocation happen in different partitions
(see hierarchical checkpointing scheme in
the figure on the left)
current AD checkpointing does not track
resources
dynamic memory is “easy” as long as
nothing is deallocated before the adjoint
sweep is complete.

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 95

options to handle local deallocations

1 subroutine foo(p,t)
2 integer, intent(inout), pointer, dimension(:) :: p
3 integer, target :: t(:)
4 t=2∗p ! need adjoint pointer to point to (invisible) t1
5 p=>t ! pointer is overwritten
6 end subroutine
7
8 subroutine bar
9 interface

10 subroutine foo(p,t)
11 integer, intent(inout), pointer, dimension(:) :: p
12 integer, target :: t(:)
13 end subroutine
14 end interface
15 integer, target, allocatable :: t1(:), t2(:)
16 integer, pointer, dimension(:) :: p
17 allocate(t1(1)); allocate(t2(1))
18 t1(1)=1
19 p=>t1
20 call foo(p,t2)
21 print∗, p(1) ! p points now to t2
22 end subroutine ! t1 and t2 are deallocated
23
24 program p
25 call bar()
26 end program

modify model to reuse/grow allocated memory
(rather than repeatedly allocate/deallocate), e.g.
turn t1 t2 into global vars,...

potential solution for allocate/deallocate within
a checkpointing partition without pointers:
track allocated memory to turn deallocates (here
implicit on exit line 22) into allocates (of the
appropriate size)

potential (complicated) solution when pointers
are involved: associate dynamic allocations in
forward sweep to dynamic allocations in the
adjoint sweep (adjoint needs to restore pointer
overwritten on line 5, but stored pointer value
references deallocated memory; need abstract
association between forward allocate on line 17
and adjoint allocate corresponding to implicit
deallocate on line 22)

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 96

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 97

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 98

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 99

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 100

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 101

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind

∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 102

summary so far

overview of AD concepts and some OpenAD examples

motivation for the following recommendations:

separation of the numerical core

unambiguous data and interfaces

well structured code

allocate once

avoid gratuitous use of pointers

model development with AD in mind ∼ good coding practice anyway

CMG Workshop 2009
Utke :”OpenAD Tutorial 1/2”, 103

	motivation
	basics & examples
	simple forward
	forward with OpenAD
	sample applications
	simple reverse
	preaccumulation & propagation
	reverse with OpenAD

	Reversal Schemes
	why do we need them
	split mode
	joint mode
	OpenAD templates
	example
	nested checkpointing

	Usage Concerns
	Separating the numerical core
	Control Flow
	Checkpointing and Data
	Releasing Dynamic Resources

	Summary

